Home » Projects » Sound Build Acceleration

Sound Build Acceleration

Sound Build Acceleration: Our empirical studies found that the bulk of the clock time during the builds of the ~2000 largest and most popular Java open source software applications is spent running test cases, so we seek to speed up large builds by reducing testing time. This is an important problem because real-world industry builds often take many hours, so developers cannot be informed of any errors introduced by their changes while still in context – as needed for continuous integration (best practice). The consequent lack of attention to failed tests is one of the major reasons that software is deployed with so many security vulnerabilities and other severe bugs. Prior work reduces testing time by running only subsets of the test suite, chosen using various selection criteria. But this model inherently reduces failure detection, and may be unsound because remaining test cases may have dependencies on removed test cases (causing false positives and false negatives). We thought out of the box to substantially reduce measured testing time without removing any test cases at all, thus no reduction in failure detection. For example, we developed tools that use static and dynamic analyses to determine exactly which portion of the state written by previous test cases will be read by the next test case, and instrument the bytecode to just-in-time reinitialize only that dependent portion of the state, rather than restarting the JVM between separate test cases, a common industry practice. Some dependencies are unintentional, so our tools also inform developers so they can re-engineer the code to remove those dependencies. Other dependencies are necessary, because series of tests are needed to build up and check each step of complex usage scenarios; for these our tools bundle dependent test cases and distinguish independent sets of test cases to enable sound parallelization of large test suites.

We expect to use components of this tool as part of the Mutable Replay project, and are seeking new project students in tandem with that effort.

Contact Professor Gail KaiserĀ (kaiser@cs.columbia.edu)

Team Members

Faculty
Gail Kaiser

Former Graduate Students
Jonathan Bell

Links

Publications

Jonathan Bell, Gail Kaiser, Eric Melski and Mohan Dattatreya. Efficient Dependency Detection for Safe Java Test Acceleration. 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE), Aug-Sep 2015, pp. 770-781.

Jonathan Bell, Eric Melski, Gail Kaiser and Mohan Dattatreya. Accelerating Maven by Delaying Dependencies.3rd International Workshop on Release Engineering (RelEng), May 2015, p. 28.

Jonathan Bell, Eric Melski, Mohan Dattatreya and Gail Kaiser. Vroom: Faster Build Processes for Java.IEEE Software, 32(2):97-104, Mar/Apr 2015.

Jonathan Bell and Gail Kaiser. Unit Test Virtualization with VMVM. 36th International Conference on Software Engineering (ICSE), June 2014, pp. 550-561. (ACM SIGSOFT Distinguished Paper Award)

Jonathan Bell and Gail Kaiser. Unit Test Virtualization: Optimizing Testing Time. 2nd International Workshop on Release Engineering (RelEng), April 2014.

Jonathan Bell and Gail Kaiser. VMVM: Unit Test Virtualization for Java. ICSE 2014 Formal Demonstrations Track, Companion Proceedings of 36th International Conference on Software Engineering (ICSE), June 2014, pp. 576-579. Video at https://www.youtube.com/watch?v=sRpqF3rJERI.

Software

Download VmVm.