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Abstract—When programs fail in the field, developers are often
left with limited information to diagnose the failure. Automated
error reporting tools can assist in bug report generation but
without precise steps from the end user it is often difficult for
developers to recreate the failure. Advanced remote debugging
tools aim to capture sufficient information from field executions
to recreate failures in the lab but often have too much overhead
to practically deploy. We present CHRONICLER, an approach to
remote debugging that captures non-deterministic inputs to ap-
plications in a lightweight manner, assuring faithful reproduction
of client executions. We evaluated CHRONICLER by creating a
Java implementation, CHRONICLERJ, and then by using a set of
benchmarks mimicking real world applications and workloads,
showing its runtime overhead to be under 10% in most cases
(worst case 86%), while an existing tool showed overhead over
100% in the same cases (worst case 2,322%).

Index Terms—Debugging aids, Software maintenance, Error
handling and recovery, Maintainability

I. INTRODUCTION

While software may behave properly under testing prior to
deployment, it can be difficult to fully anticipate all possible
usage scenarios and configurations in the field, where software
is required to operate on different operating systems and in
conjunction with various external systems. Reproducing field
failures in the lab can be difficult — especially in the case of
software that behaves non-deterministically, relies on remote
resources, or has complex reproduction steps. Even when end-
users file bug reports, it can be difficult to coerce users to
provide detailed enough steps to reproduce the failure [7]
(indeed, they may not even know how to reproduce it). To
bridge the information gap, remote debugging tools aim to
automatically capture information from the failing code and
transmit it to developers.

A typical approach to remote debugging captures the state of
the system just before a bug is encountered [3], [29]. However,
unless such a system knows in advance that a bug is about to
be encountered, it is impossible to provide developers with the
exact state of the system before the bug is encountered, unless
that state is constantly logged in anticipation of a defect. This
approach tends to produce high overheads (reaching 2,000%+
overhead) in the deployed application [3], which may make
it unacceptable for many uses. Novel solutions that lower this
overhead typically limit the depth of information recorded (e.g.
to use only a stack trace, rather than a complete state history)

[28] or the breadth of information recorded (e.g. to only
record information on a particular subsystem that a developer
identifies as potentially buggy) [29]. While these approaches
reduce overhead significantly (indeed, in many cases [28] sees
0%), there remain cases wherein restricting the breadth of
recording reduces the effectiveness of bug reproduction.

Specifically, limiting the depth of information gathered may
fail to reproduce an error if the defect does not present
itself immediately. Imagine a program that reports its stack
trace (along with each parameter for those methods) upon
encountering a bug and contains (among others) methods A
and Z. Method A sets a heap variable V , and method Z
reads it. The program calls method A, which sets V to an
invalid value and later on calls method Z, which reads the
invalid value in V and crashes. In this situation, a stack trace
would show the invocation of Z but not the invocation of
A, as it occurred in another branch of the execution tree.
Although symbolic analysis may be able to discover that
original invocation of A (as in [28]), this is not always feasible.

Similarly, by limiting logging to a specific subcomponent
of an application, it is only possible to reproduce the bug if
it occurred within that subcomponent. This technique requires
that developers know a priori which sections of code will be
likely to crash and if they select too many the performance of
the system degenerates to the case where everything is logged.
If too large of a subsystem is selected then the performance
benefit shrinks in the event that all subcomponents are execut-
ing on the same CPU.

When filtering logging information in either of the two ways
described above fails, the typical solution is to resort to a
heavier recording — capturing a trace, for instance — leading
to runtime overhead increases. In this paper, we present
CHRONICLER: a technique that supports remote debugging by
capturing program execution in a manner that allows for accu-
rate replay in the lab, with low overhead. In addition to simple
stand-alone applications, CHRONICLER supports accurate and
efficient record and replay of client-server applications, where
developers may replay server interactions on clients without
requiring the server to participate in the replay process.

CHRONICLER only logs sources of non-determinism at the
library level — allowing for a light recording process while
still supporting a complete replay for debugging purposes.
When a failure occurs, CHRONICLER generates a test case
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Fig. 1: High Level Overview of CHRONICLER

that consists of the inputs (e.g. file or network I/O, user
inputs, random numbers, etc.) that caused the system to fail.
This general approach is diagramed in Figure 1 and can be
applied to any language that runs in a VM (for instance,
Java or Microsoft’s .NET CLR), requiring no modifications to
that VM. We demonstrate the feasibility of CHRONICLER by
implementing it in Java, and found that the overhead for real
world applications was minimal (<5% in the case of Eclipse
performance tests, <10% for Tomcat). The main contributions
of this paper are:

• A presentation of our remote-debugging model for accu-
rate bug reproduction: CHRONICLER

• CHRONICLERJ, an implementation of CHRONICLER for
Java, available for download and use now on github [4]

• A thorough evaluation of its performance demonstrating
its low overhead on real world applications

The record and replay technique used by CHRONICLER can
be applied to several other research areas to improve perfor-
mance concerns that have been holding back greater progress:

• Test suite generation — Existing tools impose high over-
head but could be run offline on captured executions [27]

• Efficient checkpoint and restart for VM based languages
— existing tools [1] are not suited to VM based languages

• Benchmark generation — Existing benchmarks are hand
written, but can be automated with record-replay frame-
works [39].

The rest of the paper is organized as follows. In Section
II, we discuss related work in the field of record and replay
systems, error reporting and test case generation. We elaborate
on the CHRONICLER approach in Section III and present
implementation details in Section IV. Our empirical evaluation
of CHRONICLER and a comparison with another Java-based
bug-reproduction tool is presented in Section V. In Section VI,
we discuss some of the limitations of CHRONICLER. Finally,
we conclude and outline some ideas for future work.

II. RELATED WORK

There are several widely used systems for collecting runtime
information to diagnose failures. Microsoft’s Windows Error
Reporting tool has been in use since 1999 and has collected
billions of error reports since then [23]. This tool collects
system information after the point of crash such as register

contents, thread stacks, hardware specifications and with the
user’s permission, transfers it back to the vendor for analysis.
Apple’s iPhone OS error reporter [2] and Firefox’s Breakpad
[20] are similar, reporting system state after a crash. While
these systems have minimal runtime overhead (they are dor-
mant until after an error occurs), their reports do not contain
steps to reproduce the crash, nor a test case.

More recently, tools have been developed that leverage sim-
ilar information to guide symbolic execution or static analysis
to reproduce field errors [12], [16], [28], [47]. ESD uses bug
reports [47], while Crameri et al’s approach uses a partial
recording of branch traces to generate test cases [16]. BBR
similarly captures branch traces, but can create partial replays
to better support long-running applications [12]. BugRedux
[28] can use four different kinds of execution data: points
of failure, call stack at failure, call sequences and complete
program traces. ESD and BugRedux (when operating in call
stack or point of failure mode) capture no information until
failure, and therefore add no runtime overhead. However, these
techniques are imperfect and can not always reproduce the
failure, hence BugRedux also supports more detailed logging
methods, which can produce higher overhead.

ReCrashJ [3] is a Java-based tool that automatically gen-
erates test cases when software crashes by tracking method
arguments for the entire call stack. The system is limited in
performance, showing overhead as high as 100,000%, 60%, or
42% (depending on the logging method used, presented here
in descending order of soundness).

Scarpe [29] is a bug reproduction tool that targets Java
and requires developers to annotate their application to show
component boundaries, capturing interactions between the
classes of interest and external code. This approach can be
quite efficient when the component selected for logging has
limited external interaction, but in other cases the overhead
is as high as 877%. In contrast to Scarpe which captures
inter-component interaction within an application, CHRONI-
CLER records interactions between the application of interest
and its environment.

At their core, techniques such as CHRONICLER, ReCrashJ
and Scarpe are essentially built on record and replay systems.
Record and replay systems capture program executions and de-
terministically replay them. Some of the earliest such systems
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were machine-wide, aimed to debug operating systems [19],
[33], [40], [45]. Unlike CHRONICLER, these systems capture
everything running on the machine (rather than within a
specific program) and are invasive, requiring custom hardware,
a modified operating system, or a specialized virtual machine.

Liblog [21], ADDA [14], Mugshot [31], and R2 [24] are
four application-level record and replay systems with the
same underlying principle as CHRONICLER— logging non-
determinism. Liblog is a tool for C applications to record
and replay all interactions between the application and the
operating system at the system call level. ADDA works at the
libc level and is optimized to generate shorter replays that
still produce the same failures. However, these approaches
are insufficient to capture all sources of non-determinism
in C programs, which can interact with the outside system
through mechanisms such as shared memory or asynchronous
intercepts, and therefore can not guarantee complete replay
(concerns that do not arise in a VM). Mugshot [31] is a
record and replay system targeting JavaScript applications with
the same underlying principle as liblog and ADDA, designed
to function in the limited execution model of browser-based
applications (based on non-preemptive callbacks). This model
does not apply to languages such as Java which have a
rich execution model, full multithreading support and many
more sources of non-determinism than Javascript. R2 requires
developers to manually annotate their application to indicate
how each function should be logged. CHRONICLER’s approach
is fundamentally very similar to these systems in that all three
systems log non-determinism, although key to our approach
is the level at which we intercept the non-determinism, which
differs from these systems and allows us to be more perfor-
mant.

Although several record-replay systems have been described
in the literature, only a few target VM-based languages. De-
JaVu [13] was one of the earliest JVM based record and replay
systems, but required invasive changes to the JVM itself.
jRapture [41] is a Java record and replay system designed to
be used for profiling executions after they have been captured.
jRapture uses an overall approach similar to CHRONICLER but
requires modifications to the core JRE API libraries, which
complicate its widespread distribution. Preliminary perfor-
mance testing showed jRapture to have overheads ranging
from 0.80-10,000% depending on the relative proportion of
I/O in the application being logged [41].

While test case generation tools (e.g. [17], [35], [37],
[50]) generate test cases to increase test suite code coverage
offline, CHRONICLER generates test cases that specifically
reproduce field failures. Although these tools are run statically,
CHRONICLER could be used in conjunction with test case
generation tools that are guided by an execution, such as [27].

III. APPROACH

The CHRONICLER approach relies on a simple principle:
if a bug occurs deterministically, then reproducing it in the
lab can be made trivial — the developer need only run
the program, and the bug will present itself. Unfortunately,

Non-deterministic API

Language VM (.NET CLR, JVM, etc)

Outside world (sources of non-
determinism)

Deterministic APIApplication

Chronicler

Language API

Fig. 2: Logging Non-determinism with CHRONICLER

software often fails to behave completely deterministically,
with inputs provided by outside systems (via network, file
or console I/O, shared memory access, etc), from random
numbers, from system properties, such as the current time
or machine configuration, or from thread interleaving. Hence
CHRONICLER records sources of non-determinism in a pro-
gram and replays them to reproduce the bug.

Figure 2 shows the overall approach to logging non-
determinism with CHRONICLER. CHRONICLER is designed to
function in any VM-style programming language, where inter-
action outside of the VM is restricted to a finite set of meth-
ods. CHRONICLER runs completely within the VM, and sits
between the application and all sources of non-determinism,
logging them as they enter the application code. Note that
although thread interleavings present non-determinism internal
to the VM, they are not logged. This limitation is addressed
further in Section VI, but does not prevent CHRONICLER from
replaying non-race bugs.

Unlike systems like liblog [21] that record non-determinism
at the granularity of system calls, CHRONICLER records non-
determinism at the granularity of the methods provided by the
VM. This distinction means that there will be a wider selection
of methods that need to be logged, as VM-based languages
(such as Java or .NET) typically provide a common library
or API of utility functions. For instance, in order to read data
from a file, a programmer may have at their disposal methods
to read by line, by word, or in a binary format into a byte
array. The liblog approach would record the underlying call
from all of these methods that actually reads data from the file.
On the other hand, CHRONICLER will record the invocation of
each of the language utility methods (such as to read a line),
rather than the native routine itself.

Our key insight of logging at the API level removes the
need to modify any language-provided libraries and results
in increased performance for CHRONICLER. Returning to our
example of reading data from a file, imagine an implemen-
tation of the “readLine” method provided by the language
that reads N bytes from a file into a buffer until it reaches
a newline character. Rather than log the buffer every time that
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the underlying “read” method is called, CHRONICLER simply
logs the line that is eventually returned. Of course, application
code can also directly call native methods (without utilizing
the language-provided API), and these calls are logged as well.

CHRONICLER automatically scans the language API to
identify all potentially non-deterministic method calls and then
instruments the application code to log the result of each such
call, all at the byte code level. CHRONICLER logs a unique,
reproducible identifier for each thread to denote which log
entry should be replayed in which thread. The log is buffered
in memory and flushed to disk as the log size increases, or
when a failure is detected. CHRONICLER similarly instruments
the application code to create a “replay” version, which
replaces non-deterministic method calls with instructions to
replay from the log file, to be used to reproduce failures.

We create a special case to handle event-driven systems,
where the event dispatcher is part of the native code (e.g.
Swing in Java). In these cases, non-deterministic input may
drive the language API to fire events to listeners in client
application code, but the application never directly reads that
input. To reproduce these events, we log each invocation of
these listener methods, so that we can fire them in the same
ordering with the rest of our log. By logging all sources of
non-determinism, we can then reproduce the same execution,
and hence, the same failure. Moreover, this approach will
reproduce failures even if they are dependent on external
services that are unavailable for replay.

CHRONICLER instruments the application to generate a test
case and log file to transmit to developers upon encountering
an error. Test case generation can be triggered simply by
an exception being thrown or through external bug detection
techniques, supporting bugs that do not throw exceptions. With
test case in hand, reproducing the bug is simple: developers
must only run the “replay” instrumented application with the
log file as input. Execution begins at the same entry point as
the original failed execution and all inputs are reproduced from
the log, reproducing the same program execution. With this
technique we allow developers to observe the entire execution

and use existing automated debugging tools that they may
already be comfortable with.

Note that throughout the entire CHRONICLER approach,
no source code is necessary, and all instrumentation can be
performed directly on bytecode. In order to evaluate the per-
formance of this approach we implemented CHRONICLER for
Java and the JVM, although the approach is general enough
to apply to other languages within the JVM (e.g. Scala [36])
or other VMs (e.g. .NET).

IV. IMPLEMENTATION

To elaborate on the CHRONICLER approach, we describe
CHRONICLERJ, our Java implementation of CHRONICLER.
Figure 3 shows an overview of CHRONICLERJ. More technical
details about it are available in our technical report [5], or in
the code itself, available on github [4]. Its implementation can
be broken into the following four core components:

A. Detecting Non-deterministic Methods in the JVM

Our approach requires instrumenting the call site of every
method in client code that returns non-deterministic input (e.g.
I/O from the user, files, or network, random numbers, etc).
As we noted previously, within the JVM the only way that
code can receive non-deterministic input is if it makes a call
that executes native (non-Java) code. Facilities for generating
random numbers, accessing system properties (such as the
current time, IP address, hostname, etc), or interacting with
files and sockets are all implemented in native code.

Therefore the first step to identifying non-deterministic
methods in the Java API is to scan the entire API and mark
all methods that are “native” as non-deterministic. However,
not all native methods are non-deterministic. For instance, the
typical approach to copy the contents of an array is to use a
native call System.arraycopy. While an array-copy could be
implemented in Java, the native approach is more efficient
as it directly copies the contents of the entire array (stored
contiguously in memory) rather than copying entry-by-entry.
This native method (and many others) implement basic tasks
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deterministically and efficiently. We manually constructed
a stop list of methods which are native but deterministic,
ensuring that the “default” classification for a native method
was non-deterministic, perhaps sacrificing performance for
correctness, to avoid the risk of an incomplete log. This stop
list is extensible, and for performance reasons can be tuned
on a per-application basis.

The next step in identifying all non-deterministic methods
in the Java API is to identify all API methods that call the
previously identified non-deterministic methods. This process
scans the API for all callers of non-deterministic methods and
recursively marks those methods as well as their callers within
the API as non-deterministic. CHRONICLERJ also carries non-
deterministic flags up the inheritance hierarchy — for instance
the interface method InputStream.read(byte[], int, int) will be
marked as non-deterministic, since many of its implementers
are — and marks any Java library methods that call these
methods as non-deterministic as well.

At this point, we have identified all API methods that call a
method which behaves non-deterministically, or returns a non-
deterministic result. The final step is to identify methods which
can behave non-deterministically because they share state
with a non-deterministic method. CHRONICLERJ performs a
very simple analysis to determine these methods, marking all
fields set by a non-deterministic method as tainted, and then
marking all methods that read those fields as non-deterministic.
Similarly, all owners of methods called by a non-deterministic
method are marked as non-deterministic. A more advanced
control and data flow analysis could limit the number of
methods falsely flagged as non-deterministic, but we found the
performance of this technique to be adequate (a performance
evaluation of CHRONICLERJ appears in Section V-A).

Finally, CHRONICLERJ checks all classes in the application
of interest (as well as included libraries) to build a list of any
methods that directly invoke native code. With this approach
we guarantee detection of all methods that behave non-
deterministically. In this way, CHRONICLERJ builds a list of
approximately 100,000 methods (on JRE 1.7.0 05 running on
Mac OS 10.8.0) that must be logged when called by the client
code. This entire process is integrated into CHRONICLERJ, so
that it can be re-run by developers for new releases of Java,
but we do not expect this to be a common task.

B. Logging

CHRONICLERJ instruments all calls to the identified non-
deterministic methods to record return values (and buffer(s), if
applicable). All byte code instrumentation is performed using
the ASM byte code framework [10]. The log is buffered in
memory and written to disk at regular intervals (flushing the
log to disk is described further in the following section). The
log buffer can have a hard size limit, or optionally expand
as necessary until it is flushed manually. CHRONICLERJ is
thread-safe, and protects each log call with a barrier so that
no two threads can log at the same time (there is only one
log). This may result in increased thread contention, however,
the critical region contains only the generated code to log the

return value, and does not contain the actual computation that
is being logged.

Logging code is embedded inline, just after the value that we
need to log is pushed onto the stack. This technique captures
all method invocations — both direct and implicit invocations
(e.g. super methods). The instrumentation copies the object,
grows the log if necessary, writes the object to the log, writes
the thread id to the log and flushes it if necessary.

Rather than directly invoking methods that return a non-
deterministic value, some applications may instead reg-
ister callback methods that are themselves invoked non-
deterministically (e.g. Swing Action Listeners). To support
these sorts of callbacks, we identify all listener methods in
the application code that may be invoked non-deterministically
and record their invocations so that when we replaying we
can fire the invocations at the appropriate, logical time. To
efficiently support the manual invocation of these listeners
(where we would not want to log their invocation explicitly),
CHRONICLER rewrites them to only record their invocation
when invoked through the listener interface.

Reflection is supported via a wrapper that checks any
dynamically invoked methods at runtime to determine if they
need to be logged (a technique similar to that used in [29]).
CHRONICLERJ must carefully record non-deterministic calls
from overridden Java finalize methods. The finalize method is
called non-deterministically as the garbage collector destructs
objects, so we assume that they may be called out of temporal
order during replay. To reproduce events for these methods
we associate each logged value with an ID for the object
being destructed (based on a logical clock) and use this ID
to reproduce them in the correct logical order.

At the same time that logging instrumentation is performed,
a “replay” version of the application is created, which replaces
non-deterministic calls with instructions to load the appropri-
ate log value. This process leaves instructions that evaluate
any argument expressions to these methods (which themselves
may have side effects), to ensure a faithful reproduction. The
replay application also similarly wraps reflective calls with
a dynamic check to determine if they should be replayed or
executed as usual.

C. Flushing the log

By default, CHRONICLERJ flushes the log from memory
to disk after 500,000 entries are stored in the log, using
the number of entries as a heuristic for the total size (in
memory) of the log. While it is possible to more accurately
count the size of the log, doing so would add a performance
overhead that we did not wish to incur. The flush interval
is configurable, and can be disabled altogether, so that the
developer can directly invoke the flushing mechanism. This
can be particularly useful to ensure that the log flush occurs
during a period that the system is not processing many events.
The log is also automatically flushed when an uncaught
exception occurs. Flushing occurs in a background thread and
program execution can continue during the flushing process
(it does not block logging).
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D. Test Case Generation

When an uncaught exception is encountered (or when the
mechanism is manually invoked by including the CHRONI-
CLERJ library and calling the static function ChroniclerEx-
portRunner.generateTestCase()), CHRONICLERJ creates a test
case that invokes the application with the same starting param-
eters and uses any necessary log files for input, executing the
identical set of actions that caused the system to fail originally.

The generated test case contains all necessary log files
and loads them sequentially as necessary, tracking the replay
progress through each individual log. Each thread maintains its
own position in the log, and CHRONICLERJ ensures that each
thread receives the logged values for that thread, in the order
that they were logged. Again, CHRONICLERJ takes special
care to ensure that replay within finalizers occurs correctly,
even if finalizers are called in different orders.

In our evaluation that follows we show that the logging
overhead of CHRONICLERJ is reasonable for a real-world
benchmark suite. Our figures indicate that CHRONICLERJ is
lightweight compared to ReCrashJ, the only comparable sys-
tem for Java that we were able to obtain to compare to directly
(we had considered many of the tools discussed in Section II
but were limited by availability of other Java-based tools).

V. EMPIRICAL EVALUATION

We evaluated CHRONICLERJ in two dimensions: its perfor-
mance in the field when capturing executions and its ability to
reproduce failures, leading to the following evaluation metrics:

EM1: Performance overhead: Is the runtime overhead
of CHRONICLERJ’s logging suitable to be deployed
with production applications in the field?
EM2: Functionality: Does CHRONICLERJ reliably
reproduce failures?

A. EM1 - Performance Overhead

We used the DaCapo v9.12-bach suite of benchmarks [8],
a set of Java benchmarks that focus on exercising applica-
tions in real-world conditions, to evaluate CHRONICLERJ’s
performance for EM1. We also evaluated CHRONICLERJ’s
performance overhead on the same set of benchmarks used
by the Java bug reproduction system ReCrashJ [3]. Finally,
we bound the best and worst case overhead of CHRONI-
CLERJ by constructing synthetic benchmarks that specifically
target CHRONICLERJ’s strengths and weaknesses. We exe-
cuted all benchmarks on a 2.7 Ghz iMac with 16GB of RAM,
Java 1.7 05 with the heap size configured to 12Gb and Mac
OS 10.8.0 in a clean-room environment. We used the default
configuration for both ReCrashJ and CHRONICLERJ.

1) DaCapo Benchmarks: The DaCapo suite consists of
fourteen non-trivial workloads exercising a variety of open
source, widely used applications. The benchmarks are diverse
and include a widely used application server (“Tomcat”), a
full text search engine (“Lucene”) as well as “Jython”, a
Python interpreter written in Java. Several of the benchmarks
are implementations of well known and accepted workloads.
For instance, the “h2” benchmark utilizes the TPC-C workload

Benchmark Description
avrora Simulates programs running on a grid of AVR microcon-

trollers
batik Executes unit tests for Apache Batik, an SVG toolkit,

producing several images
eclipse Executes non-gui performance tests for Eclipse
fop Parses and formats an XSL-FO file into a PDF
h2 Runs an in-memory database benchmark, running trans-

actions against a theoretical banking application
jython Interprets and runs the pybench Python benchmark using

jython
luindex Indexes Shakespeare and the King James Bible with

Apache Lucene
lusearch Searches for keywords over a corpus including Shake-

speare and the King James Bible with Apache Lucene
pmd Performs a static analysis on Java source files
sunflow Renders images with ray tracing
tomcat Creates a tomcat server and runs a simple sample servlet
tradebeans Executes the DayTrader [42] benchmark via Java Beans

on an Apache Geronimo server with an in memory
database

tradesoap Executes the DayTrader [42] benchmark via SOAP on an
Apache Geronimo server with an in memory database

xalan Transforms several XML files into HTML
TABLE I

DESCRIPTION OF BENCHMARKS, FROM THE DACAPO WEBSITE [9]

[44], a common database benchmarking workload, to test an
in-memory database. The “tradebeans” and “tradesoap” bench-
marks run Apache’s DayTrader [42] benchmark workload,
an open source version of IBM’s Trade 6 workload [26]. A
complete list of the individual benchmarks executed along with
a brief description appears in Table I.

We executed all 14 benchmarks in the DaCapo suite
100 times each in both the original and the CHRONI-
CLERJ-instrumented environments. We attempted to compare
CHRONICLERJ with other bug reproduction systems on the
same benchmark, but were limited in tool availability — the
only Java-based bug reproduction system that we were able
to download was RecrashJ [3], version 0.3, a research tool
published in 2008. RecrashJ is a bug reproduction tool that
records the entire JVM state at every method invocation.

Figure 4 shows the average time per benchmark of the
DaCapo suite. ReCrashJ was incompatible with the eclipse
and sunflow benchmarks (which use Java features unavailable
at the time that RecrashJ was created), so we do not have
results for ReCrashJ for those benchmarks.

2) ReCrashJ Comparison: To create a fair basis for com-
parison with ReCrashJ, we also benchmarked CHRONICLERJ’s
performance on the same systems that the ReCrashJ authors
benchmarked in their paper [3]:

• Using SVNKit 0.8.0 (an SVN client implemented entirely
in Java) [43], checkout and update the project “amock”
from GoogleCode [22]

• Using the Eclipse 2.1 Java compiler (a compiler imple-
mented entirely in Java), compile the JDK 1.7 sample files
“Content,” “String,” and “Channel” as well as version
1.2.4 of the JLex project [6]

In Table II we show the run-time overhead for CHRONI-
CLERJ and ReCrashJ on our test platform as well as the
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Fig. 4: DaCapo Benchmark Results for a baseline execution, CHRONICLERJ and ReCrashJ

Benchmark CHRONICLERJ
Overhead

ReCrashJ Overhead

This study From [3]
Eclipsec Channel 17.22% 20.40% 34.00%
Eclipsec Content 19.89% 21.67% 13.00%
Eclipsec String 18.58% 20.91% 27.00%
Eclipsec JLex 10.84% 36.69% 42.00%
SVNKit Checkout 67.59% 168.50% 38.00%
SVNKit Update 71.82% 97.40% 11.00%

TABLE II
RECRASHJ BENCHMARK RESULTS FOR CHRONICLERJ AND RECRASHJ

original results previously obtained by [3]. We attribute the
differences in overhead between our experiment and [3] to the
architectural differences between the test systems. The extreme
differences in the SVNKit benchmark results (between our
evaluated 168% and the reported 38%) are likely related to
varying external conditions (the benchmark executes against a
third-party SVN server).

3) Targeted benchmarks: Although the DaCapo bench-
marks simulate real world workloads, we wanted to explore the
effects of injecting CHRONICLERJ with specialized workloads.
Specifically, we wanted to observe how CHRONICLERJ would
interact with a purely computational workload (which would
entail little or no instrumentation) and an I/O heavy workload
(which would be almost entirely instrumented).

We selected SciMark 2.0 [38] as our computational bench-
mark. Some of the programs included in this benchmark
are an implementation of the Fast Fourier Transform, Monte
Carlo integration and LU decomposition. SciMark uses non-
deterministic functions only to build the test data: there is
no non-determinism within the benchmark itself. We executed
the SciMark benchmark 100 times and observed that the
overhead imposed by CHRONICLERJ on purely computational
workloads is insignificant (< 1%).

In order to characterize CHRONICLERJ’s worst case per-
formance, we ran it with a program that did nothing but
read files ranging in size from 2MB to 3GB. These files
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Fig. 5: Scimark Benchmark Performance for CHRONICLERJ

were generated from random binary data, and contain no
linebreaks. The benchmark program uses the readLine method
of java.io.BufferedReader to read the file into a string. We
executed this process 100 times on our test machine and
measured the average overhead. As shown in Figure 6, as we
increased the file size, the overhead evened out at 86% as the
file size grew, providing what we feel is a reasonable upper
bound for the worst-case performance of CHRONICLERJ.

4) Discussion: As expected, CHRONICLERJ shows mini-
mal overhead in benchmarks that contain low amounts of I/O,
while overhead grows in I/O heavy situations. In all but one
case (batik) CHRONICLERJ outperformed ReCrashJ, often by
large margins. In the case of batik, we believe that ReCrashJ
performed slightly better due to a favorable environment (e.g.
low stack depths), while the I/O component (reading and writ-
ing images) slowed CHRONICLERJ. CHRONICLERJ demon-
strated a relative stability in performance (fluctuating from
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Fig. 6: I/O Benchmark Performance for CHRONICLERJ

1.56% to 39.96%) across the DaCapo suite as compared to
ReCrashJ (fluctuating from 5.97% to 2,321.94%).

Interestingly, in the RecrashJ benchmarks, although
CHRONICLERJ outperformed RecrashJ, the differences were
not as severe as in the DaCapo benchmarks. We attribute our
closer performance to the relatively shallow call stacks of the
test suite used (which benefits RecrashJ) as well as the high-
amount of file I/O (which hinders CHRONICLERJ).

We showed that even in the worst case, CHRONI-
CLERJ maintains an 86% overhead, while its best case per-
formance is under 1%. CHRONICLERJ’s overhead exceeded
10% in only benchmarks that performed large amounts of
input or output operations: fop, jython, lusearch, pmd, xalan,
SVNKit and several Eclipsec instances. Based on our CHRON-
ICLERJ evaluation, we conclude that the performance of the
CHRONICLER approach is suitable for applications that are not
dominated by file access, and even in those that contain large
amounts of file access, remains consistently bounded.

B. EM2 - Functionality

In order to evaluate the ability of CHRONICLER to success-
fully replay an execution we considered eleven real bugs in
the following applications and libraries:

• Jetty: A widely used application server for Java. We
considered a bug that caused an uncaught exception when
the HTTP string parser was given a specific input1.

• Apache Commons-Math: A stateless library consisting of
implementations of mathematical functions. We consid-
ered four bugs that resulted in uncaught exceptions and
incorrect results2.

• Apache Commons-Lang: A stateless library that provides
helper utilities for the java.lang API. We considered two
bugs that resulted in exceptions3.

1https://bugs.eclipse.org/bugs/show bug.cgi?id=363993
2https://issues.apache.org/jira/browse/MATH-{645,790,801,803}
3https://issues.apache.org/jira/browse/LANG-{72,300}

• Groovy: A JVM based dynamic language. We considered
four bugs that led to program crashes4.

CHRONICLERJ was able to faithfully reproduce the exe-
cutions, in each case reproducing the failure. All programs
terminated with the same uncaught exception that CHRONI-
CLERJ had captured earlier. A further description of each of
the bugs reproduced is omitted for brevity but appears in the
accompanying technical report [5].

VI. THREATS TO VALIDITY AND LIMITATIONS

We performed our experiments towards evaluating EM1 on
the DaCapo benchmarks, which we believe are representative
of a diverse set of real-world loads. However, it is both
possible and likely that there exist applications with workloads
that are not represented by the benchmarks. To provide insight
into performance for other workloads, the targeted benchmarks
can be used to gauge best case and worst case overheads based
on the amount of logging necessary relative to the overall
application. Although we are confident that our worst-case
benchmark truly stresses CHRONICLERJ to its limit, it remains
possible that there is some other use case that would stress it
further. Unfortunately, we were only able to directly compare
CHRONICLERJ to RecrashJ. However, other tools (notably
[28]) are likely to show equal or better performance in this
metric — but could not be executed on the same benchmark
as they do not target Java.

For EM2, the key threat to validity is the sample size and
selection. We were only able to evaluate eleven failures, given
the time-consuming process of finding real bugs that exer-
cise CHRONICLERJ’s capabilities, downloading and compiling
that older version of software, and reproducing the bug —
although we have reported in this paper every failure that
we encountered and attempted to reproduce. Although we
did not formally evaluate the efficacy of CHRONICLERJ on
GUI based applications, our anecdotal experiences show it
to be successful in reproducing GUI-based executions. We
believe that given the approach we have taken, which we
are confident is capable of reproducing (non-race) bugs, our
sample size for EM2 is not a great concern. We are currently
pursuing feedback from developers regarding the usability of
CHRONICLERJ (based on real world scenarios), available on
github [4], and indeed have already received useful input.

During our study for EM2, we did not encounter any
instances of the replay taking noticeably longer to execute
than the original version. However, we did not directly study
the speed of replay using CHRONICLERJ, and it would be
interesting to study this to identify potential improvements.

There are several known limitations to our approach and
implementation. First, CHRONICLER does not log thread in-
terleavings, and therefore does not necessarily reproduce races.
However, LEAP is a promising Java-based system for repro-
ducing racy executions which displays a reasonable overhead,
around 10% on Tomcat and Derby (but up to 600% in the

4http://jira.codehaus.org/browse/GROOVY-{2256,2503,3914,5649}
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worst case, depending on thread accesses), and we could po-
tentially combine CHRONICLERJ with LEAP to record thread
interleavings (at a higher overhead). Additionally, traditional
race-detection techniques (e.g. [32]) could be used within the
lab on replayed executions to detect possible races without
adding additional overhead to the field execution.

The second key limitation to CHRONICLER is end-user pri-
vacy. While the thoroughness of CHRONICLER’s input logging
ensures that executions observed in the field are reproduced
accurately in the lab, this approach may leak sensitive end
user information to developers. This is a typical problem
in remote-debugging systems, and several approaches have
been developed specifically to protect the privacy of inputs
recorded in the field that could be combined with CHRONI-
CLER (none of these systems are record and replay systems
themselves). One approach towards solving this problem is
input minimization [46], [49], where input that is non-essential
to replicate the program failure is removed. However, there
is no guarantee that the minimized input does not contain
any sensitive data. Camouflage [15] addresses this issue by
mutating a failure inducing input so that although the original
and mutated version share no sensitive data, the program
execution paths that they create are identical. Castro, et al
[11] used symbolic execution in conjunction with record replay
techniques in order to anonymize sensitive data present in bug
reports. Other systems (such as [28]) address end-user-privacy
by collecting execution data (e.g. stack traces), rather than
user data. We have not yet integrated any of these approaches
with CHRONICLER, and leave this for future work, which we
expect will be key to an adoption of CHRONICLER.

All record and replay systems, including CHRONICLER,
generate logs that grow over time. CHRONICLER’s log grows
in proportion to user input, so for systems that operate on
minimal input, the log will not grow significantly and can
be efficiently flushed to disk between user interactions. In
other cases, we may be able to combine novel approaches
to reducing the log size [12], [30] along with compression
techniques to decrease log sizes.

Detecting and logging all non-deterministic methods is key
to the CHRONICLER approach — which can only be applied
to languages that operate in a virtual machine. One potential
failure point is if the set of non-deterministic methods varied
between individual VMs. However, this is only possible in
the unlikely event that there is a bug in the VM itself. Simi-
larly, defects in the underlying operating system or computer
hardware may not be reproduced.

Additionally, it is possible to circumvent CHRONICLER’s
logging by creating a native method that non-deterministically
mutates its parameters (since CHRONICLER does not generally
log parameters passed to non-deterministic methods, only
return values and buffer parameters). However, this technique
is discouraged and rarely used (in the case of Java), as it is
inefficient to access object parameters in native code [18].
For our CHRONICLERJ implementation, we ensured that no
Java library methods behave in this manner by surveying all
of the native methods in the JRE, and found only 37 that

accepted a mutable object as a parameter, none of which were
actually modified. This process would need to be performed
for implementations of CHRONICLER for other languages to
make sure that this assumption holds.

VII. CONCLUSION AND FUTURE WORK

Reproducing bugs encountered in the field is a difficult task
faced by developers. In this paper we presented CHRONICLER,
a record and replay technique that can faithfully reproduce
bugs even in non-deterministic conditions. We presented the
approach used by CHRONICLER for bug reproduction: logging
non-deterministic inputs at a layer above the language API
and evaluated our approach with CHRONICLERJ by simulating
real world workloads, showing a worst-case overhead of
86%, with average-case performance significantly lower. We
demonstrated that CHRONICLER can be used to reproduce
bugs in deployed software by generating test cases from logs.

In the short term, we plan to make CHRONICLER a more
robust approach by addressing its inability to deterministically
replay thread interleavings and its lack of privacy control (for
example, by investigating possible synergies with [15], [25]).
Our future research direction also involves using CHRONI-
CLER to introduce fault tolerance in deployed software (in
combination with systems like [48]), and investigating the
application of CHRONICLER to mutable replay [34].

Another interesting research topic would be to combine
CHRONICLER with other fault reproduction tools so that upon
failure an offline and more privacy-preserving approach is
attempted to reproduce the bug (such as BugRedux [28]). If the
low ever overhead/more private approach fails, then CHRONI-
CLERJ could be automatically employed as an efficient means
to generate a trace as input to these tools.
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